AT

Karlsruhe Institute of Technology

Microkernel Construction
1.10 — Local IPC (Optimization for Multi-Threaded Applications)

Lecture Summer Term 2017
Wednesday 15:45-17:15 R 131, 50.34 (INFO)

Jens Kehne | Marius Hillenbrand
Operating Systems Group, Department of Computer Science

S . S .|

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

2

Tutoren fur Betriebssysteme gesucht _\ﬂ(lT

® Was?
- Betreuung von Tutorium

- Korrektur von Abgaben (keine Notenvergabe!)
- HiWi-Job uber je 40 Stunden von Oktober bis Februar

® Warum?

- Prasentationstechnik uben!

- Zugang zu Tutorenschulung (SQ, 4 ECTS)
B Interesse?

- Mathias Gottschlag (R161)

- mathias.gottschlag@kit.edu

05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Synchronization
via IPC

Thread A Monitor Thread B

e =

-
: -
. -
. -
-

- .

. —_

. -
—

3 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017

AT

Karlsruhe Institute of Technology

Operating Systems Group

Department of Computer Science

AS-local IPC in Practice ﬂ(".

Synchronization Load Distribution

Server
Client A ClientB Distributor W, W,

|

- e
- .
- .

-
. . -
N -

-

=
-~ -
- .
- . .
- . .
-

==
—_—-
-
=
=

4 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AS-local IPC in Practice _\ﬂ(IT

Synchronization Load Distribution
Server
Thread A Monitor Client A Distributor W, W,
|
i
5 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

AS-local IPC in Practice _\ﬂ(IT

Synchronization Load Distribution

Observations

IPC operations are within same address space
IPC operations have both blocking send and
receive phases

-- Introduce special Local IPC --
Restrictions
Same address space

Must have both blocking send and receive phase
Can execute entirely at user-level
LIPC executes in

05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

7

User-Level Threads? _ﬂ("'

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

® Would achieve required speed

@ But ...

® Not known to the kernel
® Execute in a single thread’s context

® Making them kernel-schedulable does not pay
(SDI: scheduler activations)

® Two concepts — inelegant, contradicts minimality

2 We want ...

® Kernel-level threads
® The speed of user-level threads

05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Strict Switching ST

Karlsruhe Institute of Technology

active
thread

8 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Strict Switching ST

Karlsruhe Institute of Technology

kernel
ode

active
thread

9 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Strict Switching ST

Karlsruhe Institute of Technology

active
thread

10 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Strict Switching ST

Karlsruhe Institute of Technology

kernel
code

active
thread

11 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Strict Switching ST

Karlsruhe Institute of Technology

kernel
code

active
thread

12 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Strict Switching ST

Karlsruhe Institute of Technology

kernel
code

active
thread

13 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Strict Switching ST

Karlsruhe Institute of Technology

kernel
code

active
thread

14 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Basic Ildea ﬂ(".

Karlsruhe Institute of Technology

® Assume IPC t; —» t,, same address space
B |ett; execute t,-code
® Postpone real switch until the kernel is activated

® Pays if multiple lazy switches occur before first kernel activation,
e.g.:

|ttt work Lot
B Costs 0 kernel-level IPC
B client > t; > t, - dlient

® Costs 2 kernel-level IPCs

15 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Lazy Switching -\-“(IT

Karlsruhe Institute of Technology

active
thread

16 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Lazy Switching -\-“(IT

Karlsruhe Institute of Technology

kernel

i

thread#|\ll esp0 |

active
thread

17 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Lazy Switching -\-“(IT

Karlsruhe Institute of Technology

kernel

-\‘/—_'

\
L esp0 |

active
thread

18 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Lazy Switching -\-“(IT

Karlsruhe Institute of Technology

thread#

active
thread

19 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Lazy Switching -\-“(IT

Karlsruhe Institute of Technology

thread#

active
thread

20 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Lazy Switching -\“(IT

Karlsruhe Institute of Technology

kernel

active
thread

21 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Lazy Switching -\“(IT

Karlsruhe Institute of Technology

kernel

active
thread

22 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Lazy Switching -\“(IT

Karlsruhe Institute of Technology

kernel
code

thread# es pO

active
thread

23 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

IPC Revisited .\“(IT

Karlsruhe Institute of Technology

A — B: SendAndWaitForReply in user-mode
call IPC function, i.e. push A’s instruction pointer ;
save A’s stack pointer ;

if Bis valid thread ID and thread B waits for thread A
then

set A's status to “wait for B” ; A t O m i C i ty ?

set B’s status to “run” ;
load B's stack pointer ;
current thread := B ; K I D t ?
return, i.e. pop B's instruction pointer
else
more complicated IPC handling
fi .

24 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Atomicity

A — B: SendAndWaitForReply in user-mode
call IPC function, i.e. push A’s instruction pointer ;
save A’s stack pointer ;

if B is valid thread ID and thread B waits for thread A
then

set A’s status to “wait for B” ;
set B’s status to “run”;

load B's stack pointer ;
current thread := B ;

return, i.e. pop B’s instruction pointer
else

more complicated IPC handling
fi.

25 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017

AT

Karlsruhe Institute of Technology

(V4

Operating Systems Group

Department of Computer Science

Atomicity (2) _ﬂ(".
Interruption between forward point and completion point:
if is page fault
then
kill thread A
else
set A's status to “wait for B” ;
set B’s status to “run” ;
load B's stack pointer ;
current thread := B ;
set interrupted instruction pointer to completion point
fi .

26 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Kernel Data

A's TCB:
stack pointer
status

B's TCB:
stack pointer
status

current thread

AT

ttttttttttttttttttt f Technology

W Stack pointer
® Can be user accessible

B Status

B User-level effects
W Local to A's task can be ignored

W Indirect effects on other tasks can be
ignored

B System-level effects
® Must be avoided
® Validate values on change
® Maintain twin variable in kernel

27 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

UTCB - KTCB AT

Karlsruhe Institute of Technology

KTCB
KTCB

thread#

28 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

29

UTCB - KTCB "\“(IT

05.07.2017

myself

state
-237 prio

coprc

partner

USP

Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Current_thread Inconsistency _\ﬂ(IT

if CurrentKTCB.utcb '= CurrentUTCB
then

/* Inconsistency found — check validity of user-level thread switch. */
NewKTCB := getKTCB(CurrentUTCB.myself) ;

if NewKTCB.myself = CurrentUTCB.myself and
NewKTCB.space = CurrentKTCB.space and
NewKTCB.utcb = CurrentUTCB

then
/* Valid user-level switch to valid thread in same address space. */
update kernel state ;
CurrentKTCB := NewKTCB ;

else
kill thread(CurrentKTCB)

fi

fi .

30 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

O -HC

0O AR

31

Kernel State Fixup—- A —> B

A’s USP

wait for B

RUNNING

05.07.2017

A

Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017

AT

ttttttttttttttttttt f Technology

current thread

B's KTCB

B’s old
exception
frame

|

WAITING

B

Operating Systems Group

Department of Computer Science

O -HC

0O AR

32

Kernel State Fixup—- A —> B

A’s USP

wait for B

B’s USP
B’s UIP

RUNNING

05.07.2017

A

Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017

AT

ttttttttttttttttttt f Technology

current thread

B's KTCB

B’s old
exception
frame

|

WAITING

B

Operating Systems Group

Department of Computer Science

O -HC

0O AR

33

Kernel State Fixup—- A —> B

A’s USP

wait for B

B's USP
B’s UIP

RUNNING

05.07.2017

A

Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017

AT

ttttttttttttttttttt f Technology

current thread

B's KTCB

B’s old
exception
frame

|

WAITING

B

Operating Systems Group

Department of Computer Science

Kernel State Fixup—- A —> B

AT

ttttttttttttttttttt f Technology

U
T A's USP
C wait for B
B
current thread
B's KTCB
B'S USP o B’S Old
B's UIP * exception
l frame
K |
T
C
B
RUNNING WAITING
A -1 esp0 B
34 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

O -HC

0O AR

35

Kernel State Fixup—- A —> B

A’s USP

wait for B

B’s USP
B’s UIP

RUNNING

05.07.2017

A

Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017

AT

ttttttttttttttttttt f Technology

current thread

B's KTCB

B’s USP
B's UIP

1

WAITING

B

Operating Systems Group

Department of Computer Science

O -HC

0O AR

36

Kernel State Fixup—-A —> B

A’s USP

wait for B

current thread

B’s USP
B’s UIP

WAITING

05.07.2017

A

Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017

esp0 o

AT

ttttttttttttttttttt f Technology

.o
eet®
o

B's KTCB

B’s USP
B's UIP

1

RUNNING

B

Operating Systems Group

Department of Computer Science

O -HC

0O AR

37

Kernel State Fixup—-A —> B

A’s USP

wait for B

current thread

A’s new
exception
frame

|

WAITING

05.07.2017

A

Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017

esp0 o

AT

ttttttttttttttttttt f Technology

.o
eet®
o

B's KTCB

B’s USP
B's UIP

1

RUNNING

B

Operating Systems Group

Department of Computer Science

LIPC Chains ﬂ(".

O -HC

current thread

0O AR

RUNNING WAITING WAITING WAITING
et espo
38 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

LIPC Chains ﬂ(".

stitute of Technology

current thread

O —-HC

0O AR

RUNNING WAITING WAITING WAITING
et espo
39 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

LIPC Chains ﬂ(".

O -HC

current thread

0O AR

RUNNING WAITING WAITING WAITING
et espo
40 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

LIPC Chains ﬂ(".

O -HC

current thread

0O AR

RUNNING WAITING WAITING WAITING
et espo
4 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

LIPC Chains ﬂ(".

O -HC

current thread

0O AR

RUNNING WAITING WAITING WAITING
et espo
42 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

LIPC Chains S(IT

Karlsruhe Institute of Technology

O -HC

current thread

0O AR

RUNNING WAITING

e e eSpO

43 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

What About Priorities? _\ﬂ(IT

Kprio:=3

prio=3
but kprio=2

prio=2

44 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Safety & Security _\ﬂ(IT

® Threads can only destroy their own task.
W Possible even without lazy switching.

® Threads can only cheat about their identity within their
own task.

W Affects only own task.
® Threads cannot modify their effective priority, uid, etc.

45 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

46

IPC Performance Promise — May 2001 ﬂ(".

0.02 us (P 111 500 MHz)
250 1
0.47 us (P Il 500 MHz)
200
0.36 us (P Il 500 MHz)
[cycles]
1907 1401
120 0.73 us (Pentium 166 MHz)
100 - 100+ 0.91 us (R4600 100 MHz)
80
60
501 0.10 s (21164 433 MHz)
40
201
Pentlll P3 Sysops P3Lipc Pentium R4600 Alpha
05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

IPC Performance — Prototype _\Q(IT

W LIPC: 23 cycles
® 1/15% of regular IPC (no sysops, no fastpath)

® Overhead on IPC due to LIPC extensions

® 43 cydes Intra-AS IPC Too much for real-world
® 146 cycles inter-AS IPC/ systems:

® UTCB synchronization P3 inter-AS IPC was only

236 cycles w/o LIPC support!

® Overhead due to kernel fixup
w777

47 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group

Department of Computer Science

Limitations of LIPC -\g(".

ttttttttttttttttttt f Technology

¥ Intra address space only

W Register-only IPC, no map/grant/string
® Always send and receive phase

® Infinite receive timeout

® Tricky
® Change from Wait_for_X to Wait_for_Any

48 05.07.2017 Jens Kehne | Marius Hillenbrand — Microkernel Construction, SS 2017 Operating Systems Group
Department of Computer Science

