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Tutoren für Betriebssysteme gesucht 

Was? 

 Betreuung von Tutorium 

 Korrektur von Abgaben (keine Notenvergabe!) 

 HiWi-Job über je 40 Stunden von Oktober bis Februar 

Warum? 

 Präsentationstechnik üben! 

 Zugang zu Tutorenschulung (SQ, 4 ECTS) 

Interesse? 

 Mathias Gottschlag (R161) 

 mathias.gottschlag@kit.edu 
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Synchronization 

via IPC 

Thread A Monitor Thread B 
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AS-local IPC in Practice 

Thread A Monitor Thread B Client A Client B 

Server 

Distributor W2 W1 

Synchronization Load Distribution 
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Thread A Monitor Thread B Client A Client B 

Server 

Distributor W2 W1 

AS-local IPC in Practice 

Synchronization Load Distribution 

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 



Operating Systems Group 

Department of Computer Science 

6 05.07.2017 

Thread A Monitor Thread B Client A Client B 

Server 

Distributor W2 W1 Observations 
 IPC operations are within same address space 

 IPC operations have both blocking send and 

receive phases 

 

-- Introduce special Local IPC --  
 Restrictions 

 Same address space 

 Must have both blocking send and receive phase 
 Can execute entirely at user-level 

 LIPC executes in ~20 cycles! 

 

AS-local IPC in Practice 

Synchronization Load Distribution 
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User-Level Threads? 

Would achieve required speed 

But … 
Not known to the kernel 

Execute in a single thread’s context 
Making them kernel-schedulable does not pay  
(SDI: scheduler activations) 

Two concepts – inelegant, contradicts minimality 

We want … 
Kernel-level threads 

The speed of user-level threads 
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TCB 
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TCB 

kernel  

code 

active 
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Assume IPC t1  t2 , same address space 

Let t1 execute t2-code 

Postpone real switch until the kernel is activated 

Pays if multiple lazy switches occur before first kernel activation, 
e.g.: 

t1  t2 , work, t2  t1  

Costs 0 kernel-level IPC 

client  t1  t2  client 

Costs 2 kernel-level IPCs 

client   t1   t2 

Basic Idea 

t1   t2 
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Lazy Switching 
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IPC Revisited 

A  B: SendAndWaitForReply in user-mode 

call IPC function, i.e. push A’s instruction pointer ; 
save A’s stack pointer ; 
 

if B is valid thread ID and thread B waits for thread A 

then 

 

set A’s status to ɀwait for BɁ ; 
set B’s status to ɀrunɁ ; 
load B’s stack pointer ; 
current thread := B ; 

 

return, i.e. pop B’s instruction pointer 
else 

more complicated IPC handling 

fi . 

Atomicity? 

Kernel Data? 
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Atomicity 

A  B: SendAndWaitForReply in user-mode 

call IPC function, i.e. push A’s instruction pointer ; 
save A’s stack pointer ; 
– restart point – 

if B is valid thread ID and thread B waits for thread A 

then 

– forward point – 

set A’s status to ɀwait for BɁ ; 
set B’s status to ɀrunɁ ; 
load B’s stack pointer ; 
current thread := B ; 

– completion point – 

return, i.e. pop B’s instruction pointer 
else 

more complicated IPC handling 

fi . 
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Atomicity (2) 

Interruption between forward point and completion point: 

if is page fault 

then 

 kill thread A 

else 

 set A’s status to ɀwait for BɁ ; 
 set B’s status to ɀrunɁ ; 
 load B’s stack pointer ; 
 current thread := B ; 

 set interrupted instruction pointer to completion point 

fi . 
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Kernel Data 

Stack pointer 
Can be user accessible 

Status 

User-level effects 
Local to A’s task can be ignored 

Indirect effects on other tasks can be 
ignored 

System-level effects 
Must be avoided 

Validate values on change 

Maintain twin variable in kernel 

A’s TCB: 
stack pointer 
status 

B’s TCB: 
stack pointer 
status 

current thread 
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UTCB – KTCB 
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UTCB – KTCB 
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Current_thread Inconsistency 

if CurrentKTCB.utcb != CurrentUTCB 

then 

 /* Inconsistency found – check validity of user-level thread switch. */ 
 NewKTCB := getKTCB(CurrentUTCB.myself) ; 

 if NewKTCB.myself = CurrentUTCB.myself  and 

  NewKTCB.space = CurrentKTCB.space  and 
  NewKTCB.utcb = CurrentUTCB 

 then 

  /* Valid user-level switch to valid thread in same address space. */ 

  update kernel state ; 

  CurrentKTCB := NewKTCB ; 

 else 

  kill thread(CurrentKTCB) 

 fi  

fi . 
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What About Priorities? 

prio=2 

prio=3 
but kprio=2 

kernel 

kprio:=3 
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Safety & Security 

Threads can only destroy their own task. 

Possible even without lazy switching. 

Threads can only cheat about their identity within their 
own task. 

Affects only own task. 

Threads cannot modify their effective priority, uid, etc. 
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IPC Performance Promise – May 2001 
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IPC Performance – Prototype 

LIPC: 23 cycles 

1/15th of regular IPC (no sysops, no fastpath) 

 

Overhead on IPC due to LIPC extensions 

43 cycles intra-AS IPC 

146 cycles inter-AS IPC 

UTCB synchronization 

 

Overhead due to kernel fixup 

??? 

Too much for real-world 

systems: 

P3 inter-AS IPC was only 

236 cycles w/o LIPC support! 
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Limitations of LIPC 

Intra address space only 

Register-only IPC, no map/grant/string 

Always send and receive phase 

Infinite receive timeout 

 

Tricky 

Change from Wait_for_X to Wait_for_Any 
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