
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

Jens Kehne | Marius Hillenbrand

Operating Systems Group, Department of Computer Science

www.kit.edu

Microkernel Construction
I.10 – Local IPC (Optimization for Multi-Threaded Applications)

Lecture Summer Term 2017

Wednesday 15:45-17:15 R 131, 50.34 (INFO)

Operating Systems Group

Department of Computer Science

2 05.07.2017

Tutoren für Betriebssysteme gesucht

Was?

 Betreuung von Tutorium

 Korrektur von Abgaben (keine Notenvergabe!)

 HiWi-Job über je 40 Stunden von Oktober bis Februar

Warum?

 Präsentationstechnik üben!

 Zugang zu Tutorenschulung (SQ, 4 ECTS)

Interesse?

 Mathias Gottschlag (R161)

 mathias.gottschlag@kit.edu

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

3 05.07.2017

Synchronization

via IPC

Thread A Monitor Thread B

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

4 05.07.2017

AS-local IPC in Practice

Thread A Monitor Thread B Client A Client B

Server

Distributor W2 W1

Synchronization Load Distribution

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

5 05.07.2017

Thread A Monitor Thread B Client A Client B

Server

Distributor W2 W1

AS-local IPC in Practice

Synchronization Load Distribution

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

6 05.07.2017

Thread A Monitor Thread B Client A Client B

Server

Distributor W2 W1 Observations
 IPC operations are within same address space

 IPC operations have both blocking send and

receive phases

-- Introduce special Local IPC --
 Restrictions

 Same address space

 Must have both blocking send and receive phase
 Can execute entirely at user-level

 LIPC executes in ~20 cycles!

AS-local IPC in Practice

Synchronization Load Distribution

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

7 05.07.2017

User-Level Threads?

Would achieve required speed

But …
Not known to the kernel

Execute in a single thread’s context
Making them kernel-schedulable does not pay
(SDI: scheduler activations)

Two concepts – inelegant, contradicts minimality

We want …
Kernel-level threads

The speed of user-level threads

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

8 05.07.2017

TCB

Strict Switching

TCB

kernel

code

active

thread

esp0

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

9 05.07.2017

TCB

Strict Switching

TCB

kernel

code

active

thread

esp0

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

10 05.07.2017

TCB
kernel

code

Strict Switching

TCB

kernel

code

active

thread

esp0

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

11 05.07.2017

TCB
kernel

code

Strict Switching

TCB

kernel

code

active

thread

TCB

esp0

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

12 05.07.2017

TCB
kernel

code

Strict Switching

TCB

kernel

code

active

thread

TCB

esp0

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

13 05.07.2017

TCB
kernel

code

Strict Switching

TCB

kernel

code

active

thread

TCB

esp0

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

14 05.07.2017

TCB

Strict Switching

TCB

kernel

code

active

thread

TCB

esp0

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

15 05.07.2017

Assume IPC t1  t2 , same address space

Let t1 execute t2-code

Postpone real switch until the kernel is activated

Pays if multiple lazy switches occur before first kernel activation,
e.g.:

t1  t2 , work, t2  t1

Costs 0 kernel-level IPC

client  t1  t2  client

Costs 2 kernel-level IPCs

client t1 t2

Basic Idea

t1 t2

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

16 05.07.2017

Lazy Switching

TCB
TCB

esp0

kernel

code

active

thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

17 05.07.2017

Lazy Switching

TCB
TCB

esp0

kernel

code

active

thread

thread#

active

thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

18 05.07.2017

Lazy Switching

TCB
TCB

esp0

kernel

code

active

thread

thread#

active

thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

19 05.07.2017

Lazy Switching

TCB
TCB

kernel

code

esp0

active

thread

active

thread

thread#

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

20 05.07.2017

Lazy Switching

TCB
TCB

kernel

code

thread# esp0

active

thread

active

thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

21 05.07.2017

Lazy Switching

TCB
TCB

thread# esp0

kernel

code

active

thread

active

thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

22 05.07.2017

Lazy Switching

TCB
TCB

thread# esp0

kernel

code

active

thread

active

thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

23 05.07.2017

Lazy Switching

TCB
TCB

kernel

code

thread# esp0

active

thread

active

thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

24 05.07.2017

IPC Revisited

A  B: SendAndWaitForReply in user-mode

call IPC function, i.e. push A’s instruction pointer ;
save A’s stack pointer ;

if B is valid thread ID and thread B waits for thread A

then

set A’s status to ɀwait for BɁ ;
set B’s status to ɀrunɁ ;
load B’s stack pointer ;
current thread := B ;

return, i.e. pop B’s instruction pointer
else

more complicated IPC handling

fi .

Atomicity?

Kernel Data?

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

25 05.07.2017

Atomicity

A  B: SendAndWaitForReply in user-mode

call IPC function, i.e. push A’s instruction pointer ;
save A’s stack pointer ;
– restart point –

if B is valid thread ID and thread B waits for thread A

then

– forward point –

set A’s status to ɀwait for BɁ ;
set B’s status to ɀrunɁ ;
load B’s stack pointer ;
current thread := B ;

– completion point –

return, i.e. pop B’s instruction pointer
else

more complicated IPC handling

fi .

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

26 05.07.2017

Atomicity (2)

Interruption between forward point and completion point:

if is page fault

then

 kill thread A

else

 set A’s status to ɀwait for BɁ ;
 set B’s status to ɀrunɁ ;
 load B’s stack pointer ;
 current thread := B ;

 set interrupted instruction pointer to completion point

fi .

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

27 05.07.2017

Kernel Data

Stack pointer
Can be user accessible

Status

User-level effects
Local to A’s task can be ignored

Indirect effects on other tasks can be
ignored

System-level effects
Must be avoided

Validate values on change

Maintain twin variable in kernel

A’s TCB:
stack pointer
status

B’s TCB:
stack pointer
status

current thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

28 05.07.2017

UTCB – KTCB

KTCB
KTCB

thread# ksp

KTCB
KTCB

UTCB
UTCB

twins

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

29 05.07.2017

UTCB – KTCB

KTCB UTCB

myself
state

partner
USP

prio
coprc

myself
state

prio
coprc

KSP

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

30 05.07.2017

Current_thread Inconsistency

if CurrentKTCB.utcb != CurrentUTCB

then

 /* Inconsistency found – check validity of user-level thread switch. */
 NewKTCB := getKTCB(CurrentUTCB.myself) ;

 if NewKTCB.myself = CurrentUTCB.myself and

 NewKTCB.space = CurrentKTCB.space and
 NewKTCB.utcb = CurrentUTCB

 then

 /* Valid user-level switch to valid thread in same address space. */

 update kernel state ;

 CurrentKTCB := NewKTCB ;

 else

 kill thread(CurrentKTCB)

 fi

fi .

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

31 05.07.2017

Kernel State Fixup – A  B

A esp0

RUNNING

B’s KTCB

WAITING

B’s old
exception

frame

B

K
T
C
B

U
T
C
B

wait for B

A’s USP

current thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

32 05.07.2017

B’s USP
B’s UIP

Kernel State Fixup – A  B

A esp0

RUNNING

B’s KTCB

WAITING

B’s old
exception

frame

B

K
T
C
B

U
T
C
B

wait for B

A’s USP

current thread

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

33 05.07.2017

B’s USP
B’s UIP

Kernel State Fixup – A  B

A esp0

RUNNING

B’s KTCB

WAITING

B’s old
exception

frame

B

K
T
C
B

U
T
C
B

wait for B

A’s USP

current thread

!=

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

34 05.07.2017

B’s USP
B’s UIP

Kernel State Fixup – A  B

A esp0

RUNNING

B’s KTCB

WAITING

B’s old
exception

frame

B

K
T
C
B

U
T
C
B

wait for B

A’s USP

current thread

copy

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

35 05.07.2017

B’s USP
B’s UIP

Kernel State Fixup – A  B

A esp0

RUNNING

B’s KTCB

WAITING

B

K
T
C
B

U
T
C
B

wait for B

A’s USP

current thread

B’s USP
B’s UIP

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

36 05.07.2017

B’s USP
B’s UIP

WAITING RUNNING

Kernel State Fixup – A  B

A esp0

B’s KTCB

B

K
T
C
B

U
T
C
B

wait for B

A’s USP

current thread

B’s USP
B’s UIP

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

37 05.07.2017

B’s USP
B’s UIP

WAITING RUNNING

Kernel State Fixup – A  B

A esp0

B’s KTCB

B

K
T
C
B

U
T
C
B

wait for B

A’s USP

current thread

B’s USP
B’s UIP

A’s new
exception

frame

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

38 05.07.2017

LIPC Chains

U
T
C
B

current thread

wait

B’s USP

wait

C’s USP

wait

D’s USP

RUNNING WAITING WAITING WAITING

esp0

K
T
C
B

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

39 05.07.2017

LIPC Chains

U
T
C
B

current thread

wait

B’s USP

wait

C’s USP

wait

D’s USP

RUNNING WAITING WAITING WAITING

esp0

K
T
C
B

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

40 05.07.2017

LIPC Chains

U
T
C
B

wait

A’s USP

current thread

wait

C’s USP

wait

D’s USP

RUNNING WAITING WAITING WAITING

esp0

K
T
C
B

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

41 05.07.2017

LIPC Chains

U
T
C
B

wait

A’s USP

current thread

wait

B’s USP

wait

D’s USP

RUNNING WAITING WAITING WAITING

esp0

K
T
C
B

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

42 05.07.2017

LIPC Chains

U
T
C
B

wait

A’s USP

current thread

wait

B’s USP

wait

C’s USP

RUNNING WAITING WAITING WAITING

esp0

K
T
C
B

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

43 05.07.2017

LIPC Chains

U
T
C
B

wait

A’s USP

current thread

RUNNING WAITING

esp0

K
T
C
B

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

44 05.07.2017

What About Priorities?

prio=2

prio=3
but kprio=2

kernel

kprio:=3

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

45 05.07.2017

Safety & Security

Threads can only destroy their own task.

Possible even without lazy switching.

Threads can only cheat about their identity within their
own task.

Affects only own task.

Threads cannot modify their effective priority, uid, etc.

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

46 05.07.2017

IPC Performance Promise – May 2001

82

16

23

36

55

7

38

0

20

40

60

80

100

120

140

Pentium R4600 Alpha

0.73 µs (Pentium 166 MHz)

0.91 µs (R4600 100 MHz)

0.10 µs (21164 433 MHz)

[cycles]

236

180

12
0

50

100

150

200

250

Pent III P3 Sysops P3 Lipc

0.47 µs (P III 500 MHz)

0.36 µs (P III 500 MHz)

0.02 µs (P III 500 MHz)

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

47 05.07.2017

IPC Performance – Prototype

LIPC: 23 cycles

1/15th of regular IPC (no sysops, no fastpath)

Overhead on IPC due to LIPC extensions

43 cycles intra-AS IPC

146 cycles inter-AS IPC

UTCB synchronization

Overhead due to kernel fixup

???

Too much for real-world

systems:

P3 inter-AS IPC was only

236 cycles w/o LIPC support!

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

48 05.07.2017

Limitations of LIPC

Intra address space only

Register-only IPC, no map/grant/string

Always send and receive phase

Infinite receive timeout

Tricky

Change from Wait_for_X to Wait_for_Any

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

